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The work to follow grew out of an attempt to generalize a standard random walk
problem. The orderly presentation of our mathematics does not represent the
process of developing the ideas. That process was actually quite haphazard as befits
the subject.

A Standard Problem.

Let us suppose that a random walk takes place on the linear array of points
x = 1,2,3,.., N. On each "go" from an interior point,x = 2, 3,4, ..., N - 1, the
random walker must take a unit step either to his right or to his left. The probability
of a move in either direction in 1/2.
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FIGURE 1. The Linear Array

Let p(x) represent the probability of reaching the endpointx = N fromx = 1,
2,3,..,N-1,N.Bothx = 1andx = N serve as traps from which there is no escape.
Thus p(I) = 0 and p(N) = 1. The probabilities must satisfy the average value
condition

p(x) = (12)p x-1) + (1/2)pkx + 1) )

on the interior of the array. This equation implies that p(x) = x /N, and further
computations show that p(x) is the unique function satisfying both Equation 1 and
the boundary condition p(1) = 0, p(N) = 1. Finding p(x) is an example of a
one-dimensional Dirichlet problem (Doyle and Snell, 1984; Boyd and
Raychowdhury, 1989; Boyd and Raychowdhury, 1992a; Boyd and Raychowdhury,
1992b).

An Extension of the Problem.
We asked the question: "Are there functions f(x) such that Equation 1 when
amended to
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will uniquely define a probability of reachingx = N from an interior point of the
array?"
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Restrictions upon the functions are that £(x) = 0, f(x - 1)/f(x) and f(x + 1)/f(x)

are positive, and

l(fgx—l)) +_]:(f(x+1))=1 3)
AN 2\ @) '

Equation 3 is necessary since the two ratios of functions represent the prob-

abilities of moving to the left and right from the point with coordinate x. This

equation can be rewritten as
W2)f(x-1) + (/)f(x + 1) = f(x)

which repeats the average value property of Equation 1. Therefore, any such
function f(x) must be linear.

A Solution of the Extended Problem.
Equation 2 can be rewritten as

fx+DpG+D-)p@]-[f&x)p &) -fax-Dp&-1)] =0

which suggests that the second of the successive differences in the product function
f(x)p(x) for unit increments inx is zero. Therefore, we are led to consider f(x)p(x)
= Ax + B where the constants A and B need to be determined from the choice
of f(x) and the boundary conditions on p(x).

For example, suppose that f(x) = x, p(1) = 0, and p(N) = 1so thatp(x) = (Ax -
+ B)/x. Then p(1) = Oimplies that, A = -Band p(N) = limplies that A = N/(N-1).
Thus p(x) = (N/(N-1))((x -1)& ) and further computation shows that f(x) satisfies
Equation 3 while p(x) satisfies Equation 2.

Equations 2 and 3 also imply that the maximum and minimum values of p(x)
must occur at the endpoints of the walk (x = 1 and x = N). Therefore, two
probability functions p(x) and p’ (x) which agree atx = 1 andx = N must necessarily
be identical on all of {1, 2, 3, ..., N}.

Example 1.

We now give a particular example to indicate the sort of computations that can

be made. Let N=4 and f(x) = x so that p(x) = %(x ; 1) . Then p(1)=0, p(2) =

2 8
3 P(3) =gandp(®) = 1.

We can also construct the 4-by-4 transition matrix (p(i,j)) in which p(ij)
represents the probability of a move fromx = itox = j on a single step (Kemeny
et al., 1965). The definition of our random walk implies the following:

PG, j) =0 if Ii——jl >1,
p(1,1) = land p(4,4)=1,

p(1,2)=p(43) =0, and
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(1) _f(3) _f(2) _f(4)
P@D =552y PG = 353y PG = 553 PG = 2£(3) -
Therefore,

1 0 0 o0

1 3

= 0 = 0

pGi)=|* | *
0 3 0 3
0 0 o0 1

The matrix (q(i, j)) = (p(, j))" gives the probabilities of moving fromx = ito
x =] inexactlyn = 1,2,3, ... steps. That is, q(i, j) is the probability of reaching
x = jfromx =i in n steps. Readers can verify for themselves that the entries of

(p (L)) =

S glewie =
S e O

O plRm O

Wi =R O

o

are as claimed.

Since we have computed the probabilities of reaching x = 4 for all walks taken
to their conclusion and since p (1) = 1-p (4), we can give the nonobvious limit for
(p(,j))" as n tends to infinity:

1 0 0 0

1 2

Lim ..n\n_| 3 0 0 3
n->°°( (133)) - .]; 0 0 §
9 9

0 0 0 1

This limit can be verified by the computation
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1 0 0 0 1 0 0 0
1 2 1 2
Pl = P 0 =
pan) |2 0 E-r0 0s
—9‘ 0 1] 5 5 0 0 '9—
0 0 0 1 0 0 0 1

A Two Dimensional Random Walk.

Let us now consider a random walk on the square array {1, 2,3, ..., N} x {1, 2,
3, .., N}. Suppose that the sides of the square are traps. Once the walk reaches a
side, the walk becomes one dimensional with traps at the vertices (1, 1), (1, N),
(N, N), and (N, 1). We are interested in reaching (N, N) from (x, y). We denote
the probability of that event by p(, y).

On each side, the walk is prescribed by Equation 2. At the interior lattice point
(x, y) which has the four nearest neighbors (x - 1, y), (x + 1,y), (x,y - 1), and
(x,y + 1), we have the average value requirement

1|1f(x—-1, f(x+1,
p(x,y)=;[ : plr=1y)+-EELI) pirh )4

f(x, ) f(x,y)
f(x,y—1 f(x,y+1)
f(x,y) p(xay_1)+ f(x,y) P(x,J"*'l)}

to replace Equation 2.

Straightforward computations show that, for p(1,1) = p(1,N) = p(N, 1) = 0,
p(N,N) = land f(x) = x, f(y) =y, f(x y) = f&)(y), the function

_ N? x—1 y—l)
PG =2 (5 (5

uniquely satisfies the problem and analogies with the one dimensional case hold as
expected. The problem and its product solutions can be generalized to higher
dimensions.

Example 2.

If we let N=4, then p(x, y ) = }é(l (x -

X

) (X—;—l) . We display the values
of p(x, y) in the table below. )
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X

1 2 3 4
1 0 0 0 0
y 4 16 2
2 0 9 27 3
16 64 8
3 0 27 81 9

2 8
4 0 3 9 1

TABLE 1. Values of p(x,y) for N = 4,
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